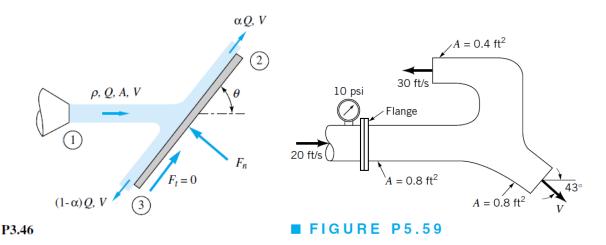

Fluid Mechanics

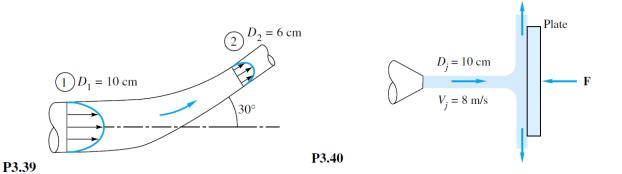
Assignment # 6


5.39 A sheet of water of uniform thickness (h = 0.01 m) flows from the device shown in Fig. P5.39. The water enters vertically through the inlet pipe and exits horizontally with a speed that varies linearly from 0 to 10 m/s along the 0.2-m length of the slit. Determine the *y* component of anchoring force necessary to hold this device stationary.

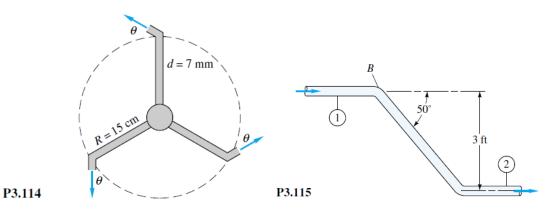
5.52 Air flows into the atmosphere from a nozzle and strikes a vertical plate as shown in Fig. P5.52. A horizontal force of 12 N is required to hold the plate in place. Determine the reading on the pressure gage. Assume the flow to be incompressible and frictionless.

5.59 Water discharges into the atmosphere through the device shown in Fig. P5.59. Determine the x component of force at the flange required to hold the device in place. Neglect the effect of gravity and friction.

P3.46 When a jet strikes an inclined fixed plate, as in Fig. P3.46, it breaks into two jets at 2 and 3 of equal velocity $V = V_{jet}$ but unequal fluxes αQ at 2 and $(1 - \alpha)Q$ at section 3, α being a fraction. The reason is that for frictionless flow the fluid can exert no tangential force F_t on the plate. The condition $F_t = 0$ enables us to solve for α . Perform this analysis, and find α as a function of the plate angle θ . Why doesn't the answer depend upon the properties of the jet?



P3.39 For the elbow duct in Fig. P3.39, SAE 30 oil at 20°C enters section 1 at 350 N/s, where the flow is laminar, and exits at section 2, where the flow is turbulent:


$$u_1 \approx V_{\text{av},1} \left(1 - \frac{r^2}{R_1^2} \right) \qquad u_2 \approx V_{\text{av},2} \left(1 - \frac{r}{R_2} \right)^{1/7}$$

Assuming steady incompressible flow, compute the force, and its direction, of the oil on the elbow due to momentum change only (no pressure change or friction effects) for (*a*) unit momentum-flux correction factors and (*b*) actual correction factors β_1 and β_2 .

P3.40 The water jet in Fig. P3.40 strikes normal to a fixed plate. Neglect gravity and friction, and compute the force *F* in newtons required to hold the plate fixed.

- **P3.114** The three-arm lawn sprinkler of Fig. P3.114 receives 20°C water through the center at 2.7 m³/h. If collar friction is negligible, what is the steady rotation rate in r/min for (*a*) $\theta = 0^{\circ}$ and (*b*) $\theta = 40^{\circ}$?
- **P3.115** Water at 20°C flows at 30 gal/min through the 0.75-in-diameter double pipe bend of Fig. P3.115. The pressures are $p_1 = 30 \text{ lbf/in}^2$ and $p_2 = 24 \text{ lbf/in}^2$. Compute the torque *T* at point *B* necessary to keep the pipe from rotating.

